Axon Regeneration Pathways Identified by Systematic Genetic Screening in C. elegans

نویسندگان

  • Lizhen Chen
  • Zhiping Wang
  • Anindya Ghosh-Roy
  • Thomas Hubert
  • Dong Yan
  • Sean O'Rourke
  • Bruce Bowerman
  • Zilu Wu
  • Yishi Jin
  • Andrew D. Chisholm
چکیده

The mechanisms underlying the ability of axons to regrow after injury remain poorly explored at the molecular genetic level. We used a laser injury model in Caenorhabditis elegans mechanosensory neurons to screen 654 conserved genes for regulators of axonal regrowth. We uncover several functional clusters of genes that promote or repress regrowth, including genes classically known to affect axon guidance, membrane excitability, neurotransmission, and synaptic vesicle endocytosis. The conserved Arf Guanine nucleotide Exchange Factor (GEF), EFA-6, acts as an intrinsic inhibitor of regrowth. By combining genetics and in vivo imaging, we show that EFA-6 inhibits regrowth via microtubule dynamics, independent of its Arf GEF activity. Among newly identified regrowth inhibitors, only loss of function in EFA-6 partially bypasses the requirement for DLK-1 kinase. Identification of these pathways significantly expands our understanding of the genetic basis of axonal injury responses and repair.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Axon regeneration genes identified by RNAi screening in C. elegans.

Axons of the mammalian CNS lose the ability to regenerate soon after development due to both an inhibitory CNS environment and the loss of cell-intrinsic factors necessary for regeneration. The complex molecular events required for robust regeneration of mature neurons are not fully understood, particularly in vivo. To identify genes affecting axon regeneration in Caenorhabditis elegans, we per...

متن کامل

Axon regeneration in C. elegans.

Single axon transection by laser surgery has made Caenorhabditis elegans a new model for axon regeneration. Multiple conserved molecular signaling modules have been discovered through powerful genetic screening. In vivo imaging with single cell and axon resolution has revealed unprecedented cellular dynamics in regenerating axons. Information from C. elegans has greatly expanded our knowledge o...

متن کامل

MAP kinase cascades regulating axon regeneration in C. elegans

Mitogen-activated protein kinase (MAPK) signaling cascades are activated by diverse stimuli such as growth factors, cytokines, neurotransmitters and various types of cellular stress. Our evolving understanding of these signal cascades has been facilitated by genetic analyses and physiological characterization in model organisms such as the nematode Caenorhabditis elegans. Genetic and biochemica...

متن کامل

Endocannabinoid-Goα signalling inhibits axon regeneration in Caenorhabditis elegans by antagonizing Gqα-PKC-JNK signalling

The ability of neurons to regenerate their axons after injury is determined by a balance between cellular pathways that promote and those that inhibit regeneration. In Caenorhabditis elegans, axon regeneration is positively regulated by the c-Jun N-terminal kinase mitogen activated protein kinase pathway, which is activated by growth factor-receptor tyrosine kinase signalling. Here we show that...

متن کامل

Axon Regeneration Is Regulated by Ets–C/EBP Transcription Complexes Generated by Activation of the cAMP/Ca2+ Signaling Pathways

The ability of specific neurons to regenerate their axons after injury is governed by cell-intrinsic regeneration pathways. In Caenorhabditis elegans, the JNK and p38 MAPK pathways are important for axon regeneration. Axonal injury induces expression of the svh-2 gene encoding a receptor tyrosine kinase, stimulation of which by the SVH-1 growth factor leads to activation of the JNK pathway. Her...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuron

دوره 71  شماره 

صفحات  -

تاریخ انتشار 2011